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The formalism of transport theory is adapted to a general description of bubble 
populations in a moving fluid. The bubble distribution, as a function of position, 
velocity, radius and time, satisfies a Boltzmann-type transport equation that 
is derived and then formally solved by the method of characteristics. In  order 
to apply this new analytical tool to the specific problem of gas bubble transport 
in the upper ocean, an ocean model and a bubble dynamics model must be chosen. 
For the purpose of illustration, explicit solutions are written for distributed 
sources in a stationary ocean with simple expressions for bubble gas diffusion and 
drag. Calculated results clarify the relations between observed bubble distribu- 
tions at  sea, proposed bubble source mechanisms and known models of single- 
bubble dynamics. 

1. Introduction 
The solutions of many experimental and engineering problems depend upon a 

knowledge of bubble distributions in a fluid medium. For instance, gas bubbles 
near the surface of the ocean are important in a variety of subjects that include 
underwater sound propagation (Shulkin 1968, 1969), meteorology (Blanchard 
& Woodcock 1957), sea surface chemistry (Sutcliffe, Baylor & Menzel 1963), 
cavitation (Fox & Herzfeld 1954) and air-sea gas exchange (Kanwisher 1963). 
Several efforts have been made to measure bubble densities in the ocean (Blan- 
chard & Woodcock 1957; Glotov, Kolobaev & Neuimin 1962; McCartney & 
Bary 1965), the most recent being that by Medwin (1970). To infer near-surface 
bubble populations from in situ measurements of acoustic attenuation, Medwin 
exploited the fact that a gas bubble’s scattering and absorption cross-sections 
for sound at  the bubble resonant frequency can typically be 1000 times its 
geometrical cross-section. For this reason large bubble densities near the sea 
surface can significantly affect underwater sound transmission. 

Many complex factors affect bubble distributions in a fluid such as the ocean, 
and some of these phenomena have been carefully investigated. For example, 
LeBlond (1969a, b )  examined gas diffusion from an ascending bubble, and Levich 
(1962, chap 8) is an excellent reference on single-bubble dynamics. The purpose 
of this paper is to develop and to demonstrate new analytical tools for investi- 
gating relationships between observed bubble distributions and the phenomena 
which create, transport and eliminate bubbles. 

In  $0 2 and 3 the formalism of transport theory is adapted to the general problem 
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of describing bubble populations in a moving fluid. The bubble distribution, as a 
function of position, time, velocity and radius, satisfies a Boltzmann-type 
transport equation that is derived. Using a Lagrangian viewpoint, the formal 
solution is expressed as a line integral of the volume source function along charac- 
teristic curves. In  $4 general expressions are obtained for bubble acceleration and 
radius change rate and some known models of gas diffusion and bubble drag are 
introduced. Finally, in the context of gas bubble transport in the upper ocean, a 
simple model is chosen to illustrate the utility of transport theory. Calculated 
results clarify relationships between observed bubble distributions, proposed 
bubble source mechanisms and known models of single-bubble dynamics. 

2. The bubble transport equation 
Consider the problem of describing the bubble distribution, as a function of 

position r, velocity v, size I and time t, in a moving fluid that may contain bubble 
sources and sinks. In  general, a ‘bubble’ might be considered as any simple, 
closed region containing a fluid somehow different from the transporting medium. 
Since examples chosen in this paper refer primarily to spherical gas bubbles, 1 
will represent the bubble radius. However, if the bubbles are not spherical, then 
I might represent the radius of a spherical volume equal to the actual bubble 
volume, or one might wish to generalize the description to include more than one 
parameter for size. 

Suppose that the time evolution of the position, the velocity and the radius 
of each bubble depends only upon the properties of the medium and the bubble 
characteristics and is statistically independent of the state of any other bubble. 
Then define the bubble distribution function @(r, v, I ,  t )  d3rd3vdl as the mean 
number of bubbles at  time tin the volume d3r about r with velocity in d3v about 
v and radius in dl about I.? Furthermore, if bubbles interact with one another, 
suppose that no more than two interact at  any one time and that the collision 
time is short compared with the time required for @ to change appreciably. Then 
$ satisfies a Boltzmann-type transport equation whose solution describes the 
ensemble-average behaviour of the bubble population in terms of single-bubble 
behaviour. 

At this point it is convenient t o  define the seven-dimensional volume element 
d77 = d3rd3vdE and to adopt a Lagrangian viewpoint. In  the time interval 
(t, t +dt) the bubbles that were in d7r about (r, v, I )  have moved to a new volume 
d7r about (r‘, v’, 1’ ) ,  where the primed quantities refer to the time t +dt and the 
unprimed quantitiesrefer to the time t .  This transport occurs through a change in 
position due to a velocity v = dr/dt,  through a change in velocity due to an 
acceleration a = dv /d t ,  and through a change in radius due to a radius rate of 
change u = dlldt; 

(1) I r‘ = r+vdt+O(dt2), 
v’ = v + adt + O(dt2), 

E’ = I + vat + O(dt2) 
t For example, in the Cartesian representation, position components lie in the intervals 

(m,x+dm),(y ,y+dy)  and (z,z+dz);  velocity components lie in the intervals ( w Z r w Z + d w , ) ,  
( v ~ .  v, + dw,) and (wz, w, + dw,); and the radius is in the interval (1, I + dl).  
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(Taylor series about time t) .  For gas bubbles in the ocean and elsewhere, the 
acceleration results from several influences that include gravity, buoyancy and 
entrainment of bubbles by the fluid, while the rate of change of bubble radii is 
caused by hydrodynamic compression, surface tension and gas diffusion. Expres- 
sions for a and v are obtained in $4, where single-bubble dynamics is discussed. 

Conservation of bubbles demands that the number $(r’, v’, I’, t + dt )  d7r’ 
of bubbles in the volume element at time t + dt be equal to the number 

1c. (r, v, 1, t )  d77 

that start in the volume element at time t ,  plus (minus) any bubbles that are intro- 
duced (lost) by distributed sources (sinks), S(r, v, I, t )  d7rdt: 

$(r’, v’, l’, t +d t )  d7r’- $(r, v, I ,  t )  d7r = S ( r ,  v, 1, t )  d7rdt + O(dt2), ( 2 )  

where S(r, v, I, t )  d7r is the rate at  which bubbles are introduced into d7r about 
(r, v, I) by distributed sources. To develop (2) it is sufficient to note that terms of 
O(dt2) will disappear in the limit dt + 0. Therefore we expand 

$’ = $(r’, v’, I‘, t + dt )  

in a Taylor series about $ 3  [$(r, v, I ,  t )  and keep terms of order up to dt: 

= $+(a$/at)dt+(v.~,$)dt+(a.~,$r)dt+v(a$/a1)dt+o(dt2) ,  (3) 

where 

V,( 1 3 (a( )/ax,a( )/aY,a( )I4 and V,( 1 = (a( )/avx,a( )/av,,a( )/W 
are Cartesian representations of the gradient operators in position space and 
velocity space, respectively. 

To proceed, d7r’ must be expressed in terms of d7r :  

d7r’ = y ( t  + dt,  t )  d7r, (4) 

( 5 )  

(6) 

where 
y(t + dt,  t )  = a@’, v’, l’)/a(r, v, I) 

= 1 + (V,. a)  dt + (av/al) dt + O(dt2) 

is the Jacobian that is obtained by using ( I )  in (5). Substituting (3), (4) and (6) 
into (a),  collecting terms of O(dt ) ,  dividing by d7rdt and taking the limit dt -+ 0 
yields the bubble transport equation: 

a$/at + v. vr$ + a. vv$ + V a 1 c . p  = s - xt $, (7) 

where xt = V,.a+av/al (8) 

and where - 00 < X, y, z < co, - 00 < vX, v,, 
A simpler (but less rigorous) derivation of (7) is obtained by recognizing that 

v$, a+ and v$ are the fluxes of bubbles in position space, velocity space and 
radius space, respectively. Then 

< 00 and 0 < 1 < 00. 

9= -(V,.(v$)+V,(a$)+a(v$)/aZ> 

is the net, flux of bubbles into d7r by virtue of ‘streaming ’ in seven-dimensional 
space (r, v, I). Since the time rate of change of 1c. in d7r is due to bubble streaming 



190 G. A .  Garrettson 

into d%, as well as to other sources X, we have a$Jat = F+ 8. Using the identity 
V,. (a$) = a. Vv@ + $V,. a and the fact that r and v are independent variables 
(V,.v = O)yields(7). 

The term C,$ in the bubble transport equation is generally non-zero owing 
to the functional dependence of acceleration a ( r ,  v, I, t )  and radius change rate 
v ( r ,  v, I, t )  on the bubble velocity and radius, respectively. This is unusual since 
in transport equations normally encountered, the term corresponding to C, @ is 
generally zero (Chapman & Cowling 1964, pp. 46, 322). Mathematically, Z t  + 0 
causes the volume element 

d7+ = [I + X t d t  + O(dt2)] d7r 

to change appreciably in the time interval dt. Physically, the term - X t $  on 
the right-hand side of (7) acts as a pseudo-source, or sink, depending upon the 
functional form of a and v.  

For example, suppose that a is proportional to - V. Then 8,. a < 0, and the 
bubbles are decelerated into a smaller volume d3v‘ = (1 + V, . adt) d3v. This 
increases the density so - (V,. a) $ acts like a ‘source ’ in (7) .  Similarly, suppose 
that v is proportional to v,l, so that avJ8l is proportional to v,. For v, > 0 the 
bubble radii are increasing and becoming more spread out over a larger interval 
dZ’ = (1  + (av/al) d t )  dl .  This decreases the density, so - (8vla.Z) $ acts like a 
‘sink’ in (7) .  

The second term on the right-hand side of (7), X ( r ,  V, I, t ) ,  represents distribu- 
ted bubble sources and sinks. In  addition to external sources and sinks, this term 
can include the effects of phenomena such as bubble scattering off small-scale 
turbulent eddies, bubble-bubble interactions, etc. For instance, when the scale 
of turbulent eddies is of the order of the bubble radius, they will be referred to  as 
‘small scale’, and bubbles entrained by the fluid may scatter off them. To 
handle this phenomenon one could define a turbulent scattering cross-section 
Cs such that 

&(r, v, -+ v, 1, + I, t )  v,$(r, v,, 1,) t )  d3v,dl,d7r 

represents the probable rate at which bubbles in d3r about r at time t are scattered 
by turbulent eddies from d3v, about V, and dl ,  about 7, into d3v about v and dl 
about 1, where v1 = lv,l is the speed. Then 

X ( r ,  v, I, t )  = &(r, v, + v, 1, -+ 1, t )  v,@(r, vl, 11, t )  d3v, dl, 

- @(r, v, I, t )  &(r, v --f vl, 1 --f I,, t )  d3vldZl (9) 

represents the net rate at  which bubbles are introduced into d7r. Specification 
of XS requires detailed knowledge of the turbulent field as well as a model for 
bubble-eddy interaction. 

Substitution of (9) into ( 7 )  results in an integro-differential bubble transport 
equation. If bubble-bubble interactions are included, the bubble transport equa- 
tion is nonlinear as well (Chapman & Cowling 1964, p. 63). Below the surface 
in the upper ocean the average separation between bubbles is about 1000 times 
the bubble radii (Medwin 1970)) but very near or at  the surfaoe wave action can 

s s 
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cause higher bubble densities. In addition, the energy contained in small-scale 
turbulence appears to increase with wave action but to decrease with depth 
(Shonting 1968). To avoid at this time obvious analytical complications, the 
bubble density will be assumed low enough so that bubble-bubble interactions 
are negligible. It will also be assumed that the energy contained in small-scale 
turbulence is negligibly small, so that the bubbles are partially entrained by the 
fluid without abrupt changes in velocity or radius. In  the ocean these assump- 
tions should be valid except very near the surface during heavy seas. 

Suppose that the source S(r, v, I, t )  is independent of @ or, at  most, is propor- 

(10) 
tional to $1 

This mathematical simplifioation yields a linear, first-order, partial differential 
bubble transport equation whose formal solution is outlined in the next section. 
It is worthwhile to note that the simplifying assumption (10) is not a severe 
limitation for many problems involving gas bubble transport in the upper ocean. 
All external bubble sources such as surface waves, rain and snow nucleation, 
organic decay and photosynthesis can be included, as well as simple models of 
bubble scattering, absorption and creation that have the form (10). 

s = sl+E1$. 

3. Solution by method of characteristics 
The first-order partial differential equation (7) is equivalent to the following 

set of eight simultaneous, first-order ordinary differential equations with initial 
conditions: 

drldt = v, - 03 < 2, y ,  z < co; 
- 00 < vz, vy, v, < co; 

dlldt = v, 0 6 1 < 00; 

d$/ldt = S-Et+, 0 6 $ < 00; $(to) = $0. (12) 

r(to) = r, = ( ~ o , Y o , ~ o ) ;  (1la-C) 

v( to)  = v, = (v,,, wvo, vzo); (11 d-f) 
W,) = 1,; 

dvld t  = a, 

The equivalence of these ‘ characteristic equations ’ and the bubble transport 
equation is most lucidly demonstrated with a geometric argument given by 
Garabedian (1964, p. 18). The parametrically represented curve C in nine- 
dimensional space 

R ( t )  = rt, W , y ( t ) ,  z(t),v,(t),  v,(t), v,(t), w, WI, - < t < a, 

obtained by integrating the characteristic equations (11) and (12), is called a 
‘characteristic curve’. Components of the initial point R(t,)  are called ‘ charac- 
teristics ’. The family of characteristic curves 

{R(t)I -GO < t < m,R( tO)  E%}, 

parametrized by the set %? of accessible characteristics, forms a hypersurface 
$(t;  r,, v,, I,, to) in nine-dimensional space that satisfies the bubble transport 
equation. 

The family of characteristic curves is essentially parametrized by the set 
of initial conditions (r,, v,, 1,) because to and lcpo(ro, v,, E , ) ,  the initial distribution, 
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are usually fixed for a given problem. Since a, v and S are generally functions 
of r, V ,  1, and t, the solutions to (11) and (12) are not only functions of the 
parameter t ,  but they each depend upon all of these initial conditions. Thus 

(13a, b )  r = r(t; r,, v,, lo,$,)  = r(t), v = v(t; r,, v,, Zo,to) = v ( t ) ,  

1 = W ;  r,, v,, I,, to )  = V ) ,  $ = W ;  ro, v,, I,, to) = W ,  ( 1 3 ~  4 
where the short notation on the right is used for brevity. 

The characteristic equations (1 I)  are simply the bubble dynamics equations. 
The bubble dynamics model used to construct a and Y (see §4), as well as the 
characteristics (r,, v,, lo ) ,  determines a ‘trajectory’ (r(t), v ( t ) ,  l ( t ) )  which is the 
projection of a characteristic curve from nine-dimensional space onto seven- 
dimensional space. Bubble trajectories in x, y, z space are likewise projections of 
characteristic curves. 

Lagrangian and Eulerian representations 

The parametric representation (13), obtained by integrating the characteristic 
equations simultaneously, describes the continuum from a Lagrangian frame 
of reference. In this description, bubbles are labelled by group according to their 
characteristics (r,, v,, l o ) .  This moving frame follows a specific group, initially in 
d77, = d3r,d3vodl, about (r,, v,, lo )  at to, along a characteristic curve to d7?(t) 
about (r(t), v(t), Z(t)) a t  t. At any time t ,  +(t)  d77(t) is the number of bubbles 
belonging to the group labelled (r,, w,, I,) that are found in d77(t) about 

(r(t>, v( tL  @)). 
On the other hand, the distribution $(r, v, I ,  t ) ,  expressed with r, v, I and t 

as independent variables, more conveniently describes the continuum from an 
Eulerian viewpoint. The Eulerian frame is fixed, and attention is focused on 
the particular volume d77 about the point (r, v, I ) .  The instantaneous bubble 
density $(r, V ,  l ,  t )  d7r is considered without regard to the characteristics of 
bubbles in the volume. 

Formal solution 

If the source S(r, v, I ,  t )  has the form (lo), then (7) is analogous to the Boltzmann 
transport equation written for neutral particles (e.g. photons or neutrons) 
or charged particles (e.g. electrons) in a purely absorbing medium with dis- 
tributed sources (Case & Zweifel 1967, pp. 31, 247). For example, neutrons will 
stream along their characteristic curves in x, y, z space, which are straight lines, 
until they are absorbed or until they escape from the medium. Similarly, the 
bubbles described by (7)  stream along their characteristic curves in r, v, I space 
until they disappear ( I  -+ 0)  or until they escape from the medium. However, the 
characteristic curves defined by (1  1) are generally not straight lines in r, v, I space 
or any of its subspaces, such as x, y, z space. 

With X given by (lo), the formal solution to (7) is obtained by integrating (12) : 

+Jtl Al(r(.t’), v(t’) w), t ‘ )  exp [ ~ , ( t ,  t’> - ~ , ( t ,  t’)] at‘, (14) 

$(k ro, vo, l o ,  t o )  = t w o ,  vo, lo ,  t o )  exp WAt, to )  - T&, t o ) ]  
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where 

and 

All integrals in this expression, and all similar integrals appearing elsewhere in 
this paper, are understood to be line integrals along the characteristic curve that 
passes through (r,, v,, I,) and (r,  v, I). 

Equation (6) represents a differential equation satisfied by the Jacobian 
y(t,  t ' )  that transforms the volume element d77 from one point to another on the 
same characteristic curve. Integrating (6) yields 

yv, t ') = exp [ q t ,  t')I, 
which can be used to rewrite (14): 

$(r, v, 1, t )  d77 = exp [T,(t, to)] $(ro, vo, 10, t o )  d770 

+/t:exp [T,(t, t ' ) ]  Xl(r', v', Z', t ') d77'dt', (16) 

where the abbreviations r = r ( t ;  r,, v,, I , ,  to ) ,  r' = r(t'; r,, v,, I,, to), etc., have 
been used. From this expression it is apparent that the number of bubbles in 
d77 about (r, v, I) at time t is the number originally in d'7, about (ro, v,, I,) a t  
to plus (minus) those added (subtracted) by sources (sinks) along the character- 
istic curve between (ro, v,, I , )  and (r, V, 1). If C, + 0 in (10) then the result is 
amplified (attenuated) by the factor exp [TI] because of the creation (absorption) 
rate XI$ along the path. For t = to + dt, equation (16) expanded in a Taylor series 
to O(dt )  yields equation (a), as it must. 

Equations (7 )  and (16) are equivalent statements about the physical model 
outlined at the beginning of fi 2. They formally represent relationships that exist 
between the bubble distribution, single-bubble dynamics and the bubble sources. 
As such, these equations can be used for calculations to investigate relationships 
among the t h e e  in real situations. For example, if any two are specified, proper- 
ties of the third can be inferred, either directly or indirectly. 

4. Single-bubble dynamics 
Prior to using (16) for calculations, a bubble dynamics model must be specified 

so that equations (11) can be integrated to obtain the characteristic curves. 
In  this section general expressions are derived for a and v, and some known models 
of gas diffusion and drag are summarized for gas bubbles in liquids. For the pur- 
pose of discussion in this section and $ 5 ,  consider an inertial Cartesian co-ordi- 
nate system with the x axis vertically upward and the origin a t  the surface of the 
liquid. Let v be the bubble velocity and V(r,  t )  be the transporting fluid's velocity 
relative to this frame of reference. 

Acceleration 

If a bubble of volume r ~ ,  containing fluid of density p ,  were completely entrained 
(v = V )  by a fluid of density p,, it would experience the same force p ,cdV/d t  
as would transporting fluid enclosed in the same volume. For p 9 p,, partial 

F L M  59 I3  
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entrainment occurs, and the bubble maintains a relative velocity u = v - V, 
with respect to the transporting fluid. Hence, the bubble experiences a drag 
force F,, which will be discussed shortly in the context of gas bubbles in liquids. 

As the bubble moves relative to the transporting fluid it ‘drags’ with it an 
amount of fluid having a volume equal to some fraction p of the bubble volume. 
By Newton’s third law, this adhering mass provides a supplementary reaction 
term -(/3apodu/dt) that acts to increase the bubble’s effective inertial mass. 
In addition, there is a net buoyant force ag(po -p )  k, where k is a vertically up- 
ward unit vector and g is the acceleration of gravity. Combining all of these forces 
in Newton’s second law yields the following expression for acceleration : 

a = FDI(~PO(P+P/PO)) + (1 +P)  (dV/dt)/(P+P/PO) + (1 - P / P o ) s ~ / ( P + P / P o ) ~  (17) 

in which avpt = avpt + (v. 0,) v. (18) 

Drag on gas bubbles in a liquid 

Because of its theoretical and practical importance, the motion of gas bubbles in 
liquids (e.g. air bubbles in water) has been actively studied (Levich 1962, $80). 
The regimes of bubble motion are classified according to the Reynolds number 
Re = upoZ/q, where q is the liquid’s viscosity. Observations of different-size 
bubbles rising in various liquids indicate that small (Re < 1) and medium-size 
(1 < Re < 700) bubbles maintain a spherical shape, whereas large (Re > 700) 
bubbles deform to flattened ellipsoids and very large bubbles (Re > 4500) are 
unstable and tend to break up. 

For small bubbles (I 2 1OOpm in water) the drag is viscous in nature and is 
given by 

F, = - KljZU, (19) 

with K = 471 for a perfectly clean bubble having a mobile two-fluid interface at  
its surface. However, most liquids such its water contain ‘ surface-active’ 
materials that coat the bubble and destroy the mobility of this interface. In 
this case the relative velocity of the transporting fluid goes to zero at  the bubble’s 
surface, and the bubble behaves like a solid sphere, for which the drag is given by 
(19) withK = 671 (Levich 1962, $570, 81). 

The flow past medium-size bubbles (100,um 7 17 2000,um in water) is 
separated, with the separation region occuping an area s1 on the downstream 
portion of the bubble’s surface. Up to the separation point the resistance that 
acts on the bubble is viscous in nature with a contribution to the total drag 
given by (19) with K = 1%. Past the separation point and into the bubble’s 
wake the flow is characterized by turbulent motion with a contribution to  the total 
drag given by 

F, = - O.~K~POS~UU, (20) 

where Kf is a drag coefficient with 0.65 9 Kf 7 0-55 for 200 < Re < 1000 
(Levich 1962, $$80, 82). 

In  the absence of surface-active materials, s1 is very small (sl N Z2/Re for 
Re 9 1)) so flow past the bubble is essentially unseparated and the drag is given by 
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(19) with K = 127~. On the other hand, when an area so on the bubble is covered by 
a monolayer of surface-active material, the relative fluid velocity in tkis region is 
zero, and flow separation occurs there. In this case viscous drag (19) is accom- 
panied by the form drag (20) with s1 = so, and the latter dominates the former 
when 

s01(4W 7 2 8 ( r / ~ , ) ~ / ( d ~ )  

(Levich 1962, $82). For example, when 1 = 500pm, only 2 yo of the bubble’s 
surface need by covered by a monolayer of this material before the drag force 
becomes quadratic according to (20). 

Radius change rate 
For gas bubbles moving in a liquid such as water, radius changes are caused 
primarily by changes in pressure, due to changes in depth or surface tension, 
or by gas diffusion across the bubble surface. Spherical bubbles (Re 2 700) 
that contain n moles of ideal gas at temperature T and pressure P are described by 

$711~ = nRT/P, (21) 

where R is the gas constant. For isothermal processes, (2 1) is readily differentiated 
to yield 

(22) 
ai I anpt dP/dt 

l J = - = -  
at 3 (7-) P -  

Gas diffusion is included in the dnldt term, while compression and surface 
tension are included in dP/dt. Assuming quasi-equiIibrium, gas pressure is the 
sum of atmospheric pressure Po, surface tension pressure 2511 and fluid weight 
-pogz,  where - -x 0 is the depth and 6 is the surface. tension: 

and 

P = Po -pogz + 2611 

dP/dt = -PogVs - (2C/l2) dlldt. 
(23) 

(24) 

Gas diflusion 
As results of the next section will indicate, gas diffusion is one of the more 
important factors affecting the bubble distribution. It is a complex phenomenon 
depending upon many influences that include the type of gas in the bubble, 
the gas diffusivity D in the transporting liquid, the gas concentration C in 
liquid contacting the bubble’s surface, the gas concentration C, in liquid far 
away from the bubble, the presence of surface-active materials in the liquid and 
on the surface o f  the bubble, the flow field around the bubble and the bubble 
radius. To simplify the discussion here it will be assumed that gas inside the 
bubble is composed of one type of ‘average’ molecule having a single diffusivity 
D. 

If the PBclet number is large, Pe = ul/D 3 I, the gas concentration gradient is 
confined to a thin boundary layer on the surface of the bubble, and diffusion 
between G and C, occurs across a small distance d N EIPeh. Hence (Levich 1962, 

93 14,721 
dn/dt = - GZ2(C - Gm), (25) 

13-2 
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where the coefficient G is generally a function of I ,  u and D. For specific applica- 
tions in which individual components of gas must be monitored, (25) will have 
t o  be generalized. 

Typically (rl/p)/D N 103, so there is a wide range of bubble radii for which the 
PBclet number is large (Pe $ 1) but the Reynolds number is small (Re < 1). 
For that case (small bubbles), 

G = 8[&(Du/Z)]* (26) 

in the absence of surface-active material (Levich 1962, $572, 91). In the presence 
of surface-active material, the flow field around a small bubble is like that around 
a solid sphere, and G becomes (Levich 1962, $14) 

G = 8(D2u/Z2)3. (27) 

At moderate Reynolds numbers (medium-size bubbles) the flow is separated, 
but the region of separation s1 is generally small. If gas diffusion across s1 can be 
neglected, (25) represents the gas diffusion with G equal to (26) multiplied by 4 3  
(Levich 1962, $91).  

If liquid in contact with the bubble surface is assumed to always be saturated 
with gas at the pressure P (in atmospheres) prevailing inside the bubble, then 
C = KP,  where K (kg m-3 atm-1) is the absorption coefficient for the liquid-gas 
system. Defining the partial pressuref E Cm/K (in atm) of gas in the transporting 
fluid, (25 )  can be rewritten as 

dnldt = - GK12(P - f ) .  (28) 

Under laboratory conditions, Wyman et al. (1952) measured the rate of 
solution and the change in composition of air bubbles in stirred sea water, as a 
function of depth. These experimental results follow very closely the law 

dn/dt = -4n6Z2(P-f) (29) 

with 6 z 4-4 x moles m--2 s-l atm-l. Using (26) and (27) with published values 
of D and K for oxygen and nitrogen in water, estimates of G K  for bubbles rising 
at  terminal velocity are found to be comparable with 4n6, but are generally 
larger. The presence of surface-active materials that retard gas diffusion and 
reduce the effective absorption coefficient across the bubble’s surface may have 
contributed to the discrepancy (Fox & Herzfeld 1954). 

5. Application to the upper ocean 
The purpose of this section is to discuss briefly application of bubble transport 

theory to the description of gas bubble populations in the upper ocean. It is 
appropriate to begin with a summary of some observations concerning bubble 
sources X and fluid velocity fields V in the upper ocean. Then, t o  demonstrate an 
application of bubble transport theory, some sample calculations are performed 
and interpreted. 
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Bubble sources and jluid velocity Jields 

Physically one might consider bubble sources to be segregated into three cate- 
gories according to depth: those on the ocean floor, those concentrated a t  the 
surface, and those distributed throughout the medium, principally near the sur- 
face. Mathematically these classifications are convenient for analysis since sources 
in the first two categories can be incorporated into (7 )  and (16) either as boundary 
conditions or as plane sources. 

The first category includes sediment-initiated bubbles, which often contain 
organic gas (McCartney & Bary 1965). In  the second category are bubbles gener- 
ated a t  or very near the surface by wind and wave action, precipitation and cap- 
tured aerosols (Blanchard & Woodcock 1957; Glotov et al. 1962; Medwin 1970; 
Monahan & Zietlow 1969). The third category includes bubbles initiated within 
the volume of the upper ocean by internal wave action, radiation and biological 
activity. Pressure changes and turbulence caused by wind-driven surface 
waves may nucleate small bubbles at  distributed cavitation sites, while the 
vertical fluid velocity and turbulence created by breaking waves introduces 
larger bubbles below the surface. 

When a wave breaks and air is rapidly mixed with water, the bubbles formed 
are entrained by a strong vertical velocity field; these bubbles have been observed 
as far as three wave heights below the surface (Kanwisher 1963). As the strong 
downward currents decay, the bubbles tend to rise under buoyancy with motion 
modified by the remaining fluid velocity field (see equation (17)). 

Shonting (1968) has measured the autospectra of particle motions in the upper 
ocean and shown that the dominant peaks are associated with the frequencies 
of the surface waves. The spectral energy decays exponentially with depth in a 
way that attenuates high frequencies the most rapidly. 

Example 

Consider a one-dimensional steady-state ocean in which all velocities are vertical 
and in which all functions depend spatially on depth only. In  this case the bubble 
transport equation reduces to 

where $(z ,v , l )  is the distribution function, us = v is the vertical velocity, 
a2 = a(z ,  v ,  I) is the vertical acceleration and Z t  = aa/av + av /X  

The characteristic equations for (30) can be written with z < 0 chosen as the 
independent parameter. This choice is equivalent to dividing equations (1 1) and 
(12) by (1 1 c )  : 

dvldz = a(z,  v, l)/v, - co < v < co; v(zO) = vO; (31) 

d1ld.Z = V ( Z ,  V ,  Z)/v, 0 < 1 < CU; l ( ~ , )  = 1,; (32) 

(33) d@/dz + (",/v) $ = S(z, v, Q/v, 0 < 9 < m; $(z,) = $,(VO> 1 0 ) .  
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Simultaneous integration of (3 1)  and (32) yields the family of characteristic 

(34) 
curves 

and bubble trajectories in x, y, z space are vertical straight lines. 

along characteristic curves (34). The form analogous to (16), 

(2, v(z; 20, VO, l o ) ,  @; zo,vo, 4)); 6 01, 

A formal solution analogous to (14) is readily obtained by integrating (33) 

v$(z, v, 1) dv dl = vo$(zo, v,, Z,) dv X(Z’, v’, I’) dz’ dv‘dl’, (35) 

is derived using the Jacobian, 

dz”] . a(v,z) zi‘ Z*(xt’, v“, I”) -- 
q v t ,  Z’) - vexp [ Jz< vn 

Physical insight into (35) can be gained by reflecting on a situation where there 
are no distributed sources, X = 0, so that 

9x2; 20, vo, 1,) dvdl = (.,/v) $@,, v,, 1,) dv,d&. 

If there is no fluid velocity, bubbles rise under buoyancy at  a terminal velocity 
and may shrink and slow down or expand and speed up (LeBlond 1969a,b). 
Those belonging to the Lagrangian group (z,, v,, I,) whose velocities increase 
with x have a spatial density that decreases as z increases because the bubbles 
at  z+dz are running away from those at x .  On the other hand, those whose 
velocities decrease as z increases have a density increasing with x since the bubbles 
at  z are piling up on those at x + dz. 

Characteristic curves. A first step towards using (35) to calculate the bubble 
distribution is the specification of a(z,  v ,  I) and V(Z, v, I )  and the computation of 
characteristic curves (34). A useful expression for the radius change rate is ob- 
tained by substituting (21), (23), (24) and (28) into (22) and solving for dZ/dt. 
Then (32) becomes 

dE/dx = V/V = (51 - (GK/4n) (RT)  [D( I -f) - z + (I?/Z)]/W)/[D - x + (8) ( l ? / I ) ] ,  (37) 

where - z is the depth, f ( z )  is the partial pressure (in atmospheres) of gas in the 
water, D 3 Po/p,g E 10 m is the depth of sea water equivalent to one atmosphere, 
and I’ = 2c/pog 1.47 x 10-5m2 is a surface tension coefficient in water. Note 
that the I’ll terms are negligible unless the bubbles are very small ( t  2 30 pm). 

The acceleration is given by (17) with the drag force given by (19) or (20). 
If the fluid velocity is negligible (V 0 ) ,  the bubbles rise very nearly at their 
terminal velocity vT. This is seen in figure 1, which was obtained by simul- 
taneously integrating (31) and (37) numericallyt for bubbles of various initial 
radii I,, starting from rest a t  x ,  = -20m. Small bubbles ( I  < 100,um), and 
medium-size bubbles (100,um < Z < 2000pm) with viscous drag dominant, rise 
at a terminal velocity vT1 given approximately by equating (19) to the buoyancy 
force: 

where K’ = 1 andK’ = 2, respectively, and where 
vTl = (g/(K’a)) z2, (38) 

a = $ ~ / p ,  g 4-37 x 10-6m2/s 

All numerical integrations alluded to  in this section were carried out using Gaussian 
quadrature or an optimal fourth-rank RungeKutta technique (Ccschino & Kuntzmann 
1966, p. 67). 
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FIGVRE 1.  The velocity v of bubbles starting at  rest and rising from an initial depth 
zo = - 20 m. The initial radius is 1, (in microns), the terminal veloaity is vT, and z - z ,  is the 
height above the release point. 

in water. When medium-size bubbles have a sufficient fraction of their surface, 

E = s0/(47rZ2), 

covered by a monolayer of surface-active material, turbulent drag dominates 
viscous drag because flow separation occurs a t  the boundary of so. They rise at 
a terminal velocity vT2 given approximately by equating (20)  t o  the buoyancy 
force: 

vT2 = (9 /8ta,  (39) 

where 6 E +Krs g 0.98. 

In general the terminal velocity of a rising bubble is not given simply by (38) 
or (39) during its entire lifetime. Many bubbles shrink or expand as they rise 
(LeBlond 1969u, b) and thereby transition from the regime of predominantly 
turbulent drag to the regime of predominantly viscous drag, or vice versa. 
The treatment of separated flow in Levich (1962, 5 82) suggests that the sum of 
(19) and (20 )  should be a useful model for the drag on medium-size bubbles in the 
transition region. Using this model in (17) ,  equation (31) can be written as 

dv/dz = - [(6/P)/11 [(v - v-) (v + .+,/vl, 
v+ = W T 2 [  2 1 + (1  + 4 Q 9  4]/2Q 

(40) 

(41) where 

with Q = v T J w T ~  = (Z/f)a and i = [ ( ~ ' a ) ~ / ( g t ) ] * .  This approach appears to have 
some merit since (41) for v- yields values close to the empirical curve produced 
by Datta, Napier & Newitt (1950), who averaged the results of several observers, 
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and since the model shows the proper limiting behaviour in the viscous (1 < i) 
as well as the turbulent (1 > I”) regimes. 

Computation of characteristic curves (34) in a quiescent fluid ( V  = 0) is 
simplified because the bubble velocity is always very nearly the terminal velocity, 
v w W ~ ( Z ; X , , I ~ ) ,  and is essentially independent of v,. Either (38), (39), (41) or 
empirical values for vT can be used in (37) to obtain Z(z;zo,Io). If (38) or (39) is 
used and surface tension is neglected, approximate analytical expressions can 
be developed. If gas diffusion as well as surface tension is neglected, then the 
extreme1 y simple approximate analytical result 

is obtained. 
z = l ~ ( z ; z o , z o )  = [(D-z,)/(D-z)]fI, (42) 

Bubble distribution. For bubbles rising in a quiescent fluid, 

$(z ,  a, 1) = 6(v @(z,  9 (43) 

should be a good approximation, where vT is given either empirically or by (38), 
(39) or (41), and where 

m 

@ ( z ,  I )  = [ $ ( z ,  v, I )  dv 
J --m 

is the ‘radius density’, the number of bubbles per unit volume per unit radius. 
Using (43) in (35) and integrating over v yields 

with 
W 

s(z’, 1’) = [ X(Z‘, v‘, 1’) dv’, 
J --m 

where dlo = (aZ,/aI) dl and dl‘ = (aZ’/aZ) d l  have been used. 
For most applications the radius density provides adequate information. 

To calculate this function for a given z and Z, one needs al‘/al, 1‘ and s(z’, I f )  at 
points on the characteristic curve that passes through ( z ,  1) so that the integral 
in (44) can be evaluated. Taking the partial derivative of (37) with respect to I’ 
and setting v = vT results in a differential equation for aZ/X that can be integra- 
ted to obtain 

where 

F ( z ;  zo,l,) 
= {(2r/z2) [ I -  (3mlrp/v,) ( ~ ( 1  -j) -2  + r/z)l[3(0 - z )  + er/z]-i 

+ + ( ~ ~ R T / v , )  [r/z2 + ( ~ ( 1  - j )  -2  + r/z) (avT/ai)/v,]]} [ 3 ( 0  - 2) + 2r/11-1, 
(46) 

in which GKl4i.r = constant = 6 (Wyman et al. 1952) has been used. When the 
approximation (41) is used, 

avT/az = ( ~ V , J Z )  [I + 4 ~ 2 1 - 4  - VJZ. (47) 
In the following discussion of sample calculations, @(z, I) will designate the 

radius density when (41) and (45)-(47) are used in (37) and (44). @,&,I) will 



30 

r n -  

5 
P 
5 
P 
Q 20 
0 

e 8 
E -  z 

2 

m * 
.3 

f 10 
.--I 

0 

201 

- - 
- 

- 
1 

- 

r 
- 

r I I 
I I I I I I I I 1 

FIGURE 2. The distribution Qz,, E , )  in relative units, of bubbles rising off the bottom of 
Saanich Inlet, B.C. (McCartney BS Bary 1965), where zo = - 197 and the bubble radius I ,  
is in microns. 

designate the approximate radius density when (42) is used in (44). For the sake 
of brevity, semi-analytical results obtained using the approximations (38) and 
(39) are not included. 

Sample calculations. As a first example, consider the situation investigated by 
McCartney & Bary (1965), who acoustically measured rather large gas bubbles 
ascending from the bottom of Saanich Inlet, B.C., and inferred the bottom source 
represented in figure 2 from the ascent velocities. If we model that ocean as one- 
dimensional and quiescent, then (44) can be used to infer the radius density 
throughout the volume. Since volume sources produce mainly smaller bubbles 
that the measurements of McCartney & Bary do not include, only the plane 
source @(zo, 1,) (figure 2) at z,, = - 197 m is considered in this sample calculation, 
and (44) reduces to 

w9 1)  = (flTO/flT) @&o, lo)  ( ~ ~ O / W .  (48) 

Using f = 1, the radius density CD and the approximation QG were computed 
at various depths between z = - 197 m and x = 0. @(z, 1) (solid line) and QD,(z, I) 
(dashed line) are plotted in figures 3 and 4 at the depths z = - 147 m, z = - 47 m 
and z = 0. Although actual calculations do not yield precisely rectangular 
distributions for z 4 x,,, 0 and QG are drawn as perfect histograms because the 
error introduced is negligible. 

While (DG neglects gas diffusion and surface tension, @ includes these effects. 
For the gas diffusion model used, all bubble radii for which @(zo, lo) is non-zero 
are sufficiently small such that these bubbles will shrink monotonically as they 
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FIGURE 3. The dist.ributions @(z ,  I) (solid line) and @ ~ ( z ,  I )  (dashed line) in relative units at  
a depth z = - 147 m, where the bubblo radius I is in microns. (DG neglects gas diffusion whilo 
(T, assumes a uniform partial pressure of one atmosphere, f = 1 ,  and R T G R I 4 n  = 10-6nl/s 
(Wyman et w l .  1952). 

15 - 

J) 

p" 

% 1 0 -  

E 
2 

2 5 -  
2 

e 
5 
P 

Fi 

P 

8 

+ 
b. 
. 3  

Bubble radius 

FIGURE 4. The distribntion @ ~ ( z ,  I ) ,  in relative units, ws. radius I ,  in microrls, 
for z = - 47 m (dashed line) and z = 0 (brokcn line). 
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Bubble radius 

FIGURE 5. The distribution @(z, I) (solid lines), in relative units, u8. radius I ,  in microns, for 
various depths, in metres, from a distributed source s(z, I) (----, equations (49) and (50)). 
The same gas diffusion model as was used to calculate @ in figure 3 is used in this example. 

rise and will disappear before reaching the surface (Le Blond 1969a, b). The dis- 
tribution @ is seen to shift toward smaller radii as depth decreases, until even the 
largest bubbles have disappeared by the time x N - 90 m, so only (DG is shown 
in figure 4. In the model used to calculate a,, the bubbles necessarily expand as 
they rise, and the distribution shifts monotonically to larger radii. 

The bubble density is simply the area under the histogram. As z increases from 
- 197 m the density of O(z, Z) initially increases since flux is conserved and the 
bubbles are slowing down and piling up. However, nearer the surface, most 
smaller bubbles have succumbed to gas diffusion and the density starts to de- 
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crease toward zero. For (DG(z,I) the density is seen to decrease as z increases 
since the bubbles are accelerating and becoming spread out. 

Interestingly enough, the experimental results of McCartney & Bary (1965) 
indicate that bubbles from the bottom of Saanich Inlet expand as they rise 
according to the distribution QG, which ignores gas diffusion. Thus, it appears 
the diffusion is somehow inhibited across the surfaces of these bubbles, which 
are composed of ‘gas released from the highly organic, anaerobic sediment of the 
bottom’, possibly methane. Either the water was saturated with respect to 
the gas(es) in the bubbles, or these bubbles were coated with an active material 
that severely impeded gas diffusion. It is significant to note that @ is calculated 
using GK/4n = 6 (equation (29)), which is based upon experiments with relatively 
clean air bubbles (Wyman et al. 1952), and thatf = 1 at all depths is not physically 
realistic. However, certain qualitative conclusions, based on a comparison of @ 
and (DG to the observed distribution, are still valid, For example, gas diffusion 
appears to be negligible in this situation; and gas diffusion as from clean bubbles 
would profoundly affect the distribution. The latter observation emphasizes 
the fact that calculated results are stroiigly dependent on certain aspects of the 
bubble dynamics and ocean models used. 

As the basis for a second sample calculation, consider the supposition that the 
observed bubble distribution indicates the functional dependence of the volume 
source. To test this idea, consider a hypothetical volume source suggested by the 
measurements of Shulkin (1968) and Medwin (1970): 

s(z, 1) = eZ’rLL(l), (49) 

where 

with 12 = I0 m and I‘ = 20pm. Physically, a source decaying exponentially with 
depth might arise from photosynthesis, light-sensitive bacteria, wave action, 
etc. Medwin (1970) has observed an exponential behaviour for small bubbles 
(1 2 60,um), and both Rledwin (1970) and Shulkin (1968) have observed that the 
near-surface bubble density appears to fall off like some power of the bubble 
radius. The radius spectrum L(1) N P5 is chosen as an example. 

Under the assumption that the source is zero below x = -30m aiid that 
f = 1, figure 5 presents log-log plots of @ ( x ,  1) (solid line) and s(z, I )  (dashed line) 
‘us. radius for four depths, z = - 29 m, - 20 m,  - 10 m and 0. A comparison of @ 
and s indicates that the distribution follows approximately the functional form 
of the source for 1 7 100,um: 

a+, z) ew-3.5,  (51) 

with h’ 2 6.5 m. The distribution a t  z = - 29 m does not fit this pattern because 
it is too near the region assumed t o  be devoid of bubbles. 

For 12 IOOpm the functional form of @ is more complicated and does not 
necessarily follow (51). Except a t  the surface, the curves are all concave down, 
which indicates a deficiency of small bubbles. Gas diffusion and surface tension 
cause small bubbles t o  disappear much more rapidly than large bubbles. 
While the small bubbles observed a t  a given depth originate primarily from local 
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sources, many of the larger bubbles originate at  sources distributed well below 
that depth. However, for the model used, gas diffusion decreases rapidly with 
depth, so there is less discrimination against the small bubbles in the near-surface 
region. From figure 5, 

Q(0, 1) - 1-3.75. ( 5 2 )  

These results indicate that if gas diffusion is significant the small-bubble 
sources will probably fall off at  a higher power of 1 than the observed distribution, 
but the larger-bubble sources may have roughly the same 1 dependence as the 
observed distribution. Furthermore, the depth dependence of the bubble sources 
is likely to be functionally similar to that of the bubble population. Of course 
these qualitative relationships between bubble population and bubble sources 
are not likely to be applicable unless the model is valid. For example, any of the 
following can have a profound influence on the bubble distribution and its 
relationship to the source: a significant fluid velocity V $: 0, a partial pressure 
f ( x )  that varies with depth, or surface-active materials that impede gas dif- 
fusion (e.g. lower K in equation (28)). 

6. Conclusions 
The main purpose of this paper has been to develop the general framework of 

bubble transport theory and then to demonstrate its application. The bubble 
transport equation and its solution relate the ensemble-average behaviour of a 
bubble population to the dynamics of a single bubble and to properties of the 
transporting fluid. Among the most important aspects of gas bubble dynamics 
in liquids are bubble gas diffusion and drag, which depend upon many different 
physical parameters. For the upper ocean, information concerning these para- 
meters, as well as information about bubble sources and fluid velocity fields, is 
usually incomplete. In  this application, bubble transport theory cannot be 
used to predict bubble distributions or to explain all of their properties. Instead 
its primary utility is as an analytical tool for investigating relationships among 
the various complex factors that affect the distribution and for refining models 
of the upper ocean. Future work will involve analyses of increasingly complex 
ocean models with the objective of understanding more about observed bubble 
populations. 
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